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SUMMARY 

We study the transient motion of the solidification front during the growth of semiconductor crystals in the 
horizontal Bridgman geometry. The calculation is based on a two-dimensional flow. We use finite elements 
which deform with the motion of the interface. The energy equation is coupled with the isothermal constraint 
of the interface in an implicit transient algorithm. Several examples show the oscillatory motion of the 
interface caused by the periodic flow of the melt, and they reveal the importance of the growth rate on the 
shape of the interface. 

KEY WORDS Finite Elements Transient Flows Three-dimensional Flows Natural Convection Interfaces 
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1. INTRODUCTION 

Although the general title of the papers in this series bears on the numerical simulation of 
semiconductor crystal growth, Parts I and II’*’ have dealt with a single liquid phase in geometries 
similar to those of the crucibles in the actual Bridgman growth. We have concluded from Part I 
that the flow of the melt is typically transient; thus, any attempt to simulate a realistic problem 
should include the possibility of calculating oscillatory motions of the interface. Such oscillatory 
motions are important; they explain the occurrence of striation in the growth ~ r y s t a l . ~  We have 
found in Part I1 that, despite the presence of oscillatory flow mechanisms in a two-dimensional 
flow, the actual crucibles used in the horizontal Bridgman growth would in general induce truly 
three-dimensional flows. Although long term developments will certainly require the simultaneous 
calculation of two phases in a three-dimensional geometry, there is no doubt that much can be 
learnt from the analysis of two-dimensional situations. Moreover, techniques can then be 
developed at a much lower cost. More information on the physics of crystal growth may be found 
in References 4 and 5. 

In the present paper, we wish to present an algorithm for studying the simultaneous two- 
dimensional transient flow and change of phase which occur during the horizontal Bridgman 
growth. From a fluid mechanics point of view, we wish to demonstrate the important geometrical 
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differences which occur when one calculates a true two-phase situation as compared to a single 
liquid phase. The method which is proposed here is not limited to the calculation of the horizontal 
Bridgman growth. It can be adapted without difficulty to the calculation of the vertical Bridgman 
growth and the Czochralski growth. 

In this problem, the unknowns are the velocity components and the pressure in the liquid phase, 
the temperature in the liquid and in the solid phases, and the location of the interface. The available 
equations are as usual the Navier-Stokes equations (with the Boussinesq approximation) and the 
energy equation. For locating the interface, and in the absence of supercooling, we know that the 
interface coincides with a melting point isotherm and that its motion releases or recovers the latent 
heat of fusion. When one uses the finite element method for simulating crystal growth, it is usually 
convenient to identify the liquid-solid interface with interelement boundaries. Thus, the location 
of the nodes lying on the interface is one of the unknown fields. In earlier work, Lynch6 and Yo0 
and Rubinsky7 have chosen to impose the melting temperature at the interfacial nodes while 
solving the energy equation; the location of the interface is determined on the basis of a local heat 
balance which includes the latent heat of fusion. Here, we will rather follow the approach used by 
Ettouney and Brown' for steady-state problems and by Crochet, Geyling and Van Schaftingen' 
for transient problems, where the release of latent heat of fusion is included as a source term in the 
energy equation and the interface is identified as the melting point isotherm. 

The cost of transient calculations is drastically reduced when one is able to decouple the set of 
partial differential equations into several separate groups. For calculating low Prandtl number 
flows, we have seen in Part I that the equations of motion can safely be decoupled from the energy 
equation. Decoupling was further carried on by Crochet, Geyling and Van Schaftingen' in 
calculating the location of the interface. However, the resulting algorithm was not robust in the 
sense that very small time steps were required for calculating an interface during rapid transients 
while the location of the interface was sometimes exhibiting spurious numerical oscillations. 

In the present paper, the governing equations are separated into two groups. On the one hand, 
we solve the Navier-Stokes equations whereas on the other we solve the energy equation together 
with the constraint on the location of the interface. The time-stepping technique for both sets of 
equations is based on the classical predictor-corrector scheme developed by Gresho, Lee and 
Sani. O 

The good behaviour of the algorithm is exhibited by means of two theoretical examples and the 
actual simulation of the horizontal Bridgman growth. One finds that the actual motion of the 
interface during growth affects its shape in a dramatic way, and that the fluid motion induces 
melting-solidification cycles near the interface. 

2. BASIC EQUATIONS 

We wish to solve transient non-isothermal two-phase problems schematized in Figure 1, which is 
representative of plane as well as axisymmetric geometries. The problem domain R is the union of 
two subdomains R, and R, separated by an interface C; R, is filled with the liquid phase of the 
material, whereas R, stands for the solid phase. The boundary of R, consists of C and its interface 
dR, with the outside world; similarly, the boundary of R, is the union of C and an,. 

The growth problem is essentially transient for the following reasons: (i) boundary conditions 
imposed on dR, and dR, vary with time and affect in particular the location of C; (ii) even when the 
boundary conditions do not vary with time, the solid-liquid system may not have reached its final 
state in view of its thermal inertia; (iii) in Part I of the present series of papers,' Crochet, Geyling 
and Van Schaftingen have shown that buoyancy-driven oscillations occur in the liquid phase 
beyond a critical value of the Grashof number, and generate an intrinsically transient problem. 



SIMULATION OF THE HORIZONTAL BRIDGMAN GROWTH. PART 111 133 

Figure 1 .  Geometry of the two-phase problem. R, and s1, denote the liquid and solid domains, respectively 

Physical situations obeying this general description are found in crystal growth based on the 
horizontal and vertical Bridgman processes and on the Czochralski technique. 

For the sake of simplicity, let us review the basic equations describing the state of the system in 
rectangular Cartesian co-ordinates. In R,, the motion of the fluid is governed by the Navier- 
Stokes equations given as follows: 

PL - + V-VV + Vp - ~ A v  + pLu(T - T0)g = 0, 

v*v = 0, 

(: ) 
(1) 

where v is the velocity field, p is the pressure, T and To stand for the actual and a reference 
temperature, respectively, pL is a reference density of the liquid phase, p its shear viscosity, c1 the 
thermal dilatation coefficient and g the acceleration due to gravity. We note that the Boussinesq 
approximation is used for generating buoyancy forces. 

The temperature field in R, is governed by the energy equation which has the following form: 

pLcL( + v-VT) - k,AT = 0, (2) 

where cL and k ,  stand for the heat capacity and the thermal conductivity in the liquid phase; heat 
generation by viscous dissipation is neglected. There is no flow in the solid phase R,; the energy 
equation is given by 

aT 
P S C S -  - ksAT = 0, 

at (3) 

where p , ,  cs and k, are the density, heat capacity and thermal conductivity in the solid phase. In 
what follows, we will assume that pL = p ,  = p .  

Let us now consider the equations needed for determining the location of the interface X . We will 
assume that the interface coincides with the melting point isotherm: 

T=T,, ,onZ.  (4) 
Moreover, the motion of Z produces a release of latent heat of fusion which is taken into account as 
a line heat source on Z for the simultaneous solution of (2) and (3). The heat produced per unit 
length of C and per unit time is given by 

rz = -pAH,v,, ( 5 )  
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where ux is the normal component of the interface velocity, which is taken as positive when directed 
towards the solid phase R,, and AHf is the latent heat of fusion. 

Equations (1)-(5) are sufficient for calculating the unknowns of the problem. The explicit 
unknowns are the temperatures in R, and R,, and the velocity and pressure fields in R,. The 
location of X is an implicit unknown of the system (1)-(5) which must be calculated together with 
the other fields. 

Time-dependent boundary conditions are applied on 8Q, and 8R,. As far as the kinematic 
boundary conditions are concerned, we will assume that the melt does not slip along the wall dR, 
and along C. A variety of boundary conditions may be chosen for calculating the temperature field: 
they include heat convection, radiation and an imposed temperature field. 

3. SPACE DISCRETIZATION 

One of the intrinsic difficulties of the present problem is the spatial discretization of the domains RL 
and R,, separated by a time-dependent interface C. The location of C is a priori unknown; when the 
temperature is not imposed as a boundary condition, one does not even know the location of a 
single point of C. With the present state of the art, one should not expect to calculate in a single run 
the full crystallization process in which Qs is empty at the outset and eventually replaces Q,. 
Rather, we will calculate limited phases of the growth in which C moves within a domain of limited 
extension. 

The domain is discretized by means of finite elements and we will always impose the condition 
that the interface C coincides with interelement boundaries. Figure 2 shows a typical (very coarse) 
finite element mesh covering the domain of Figure 1. Although the position of C is time-dependent, 
we will base our finite element technique on the hypothesis that the topology of the mesh remains 
invariant with respect to time, in such a way that the location of the nodes is entirely determined by 
the position of C and the topology of the mesh. 

By way of example, let us assume on Figure 2 that the nodes of the interface move along vertical 
lines which have been chosen a priori. The location of the interface is then fully determined by the 
set of vertical co-ordinates S ,  , S , ,  . . . which are time-dependent. Pre-established rules allow one to 
draw the finite element mesh on the basis of these vertical co-ordinates. In Figure 2, the vertical 
segments in RL and R, are divided into smaller segments of equal size (they do not need to be equal) 

Figure 2. Typical finite element mesh covering the domain of Figure 1 
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identified as element sides. The topology selected for the mesh depends upon the problem under 
consideration; the basic idea of Figure 2 is in general applicable to the Bridgman and Czochralski 
processes, but we might select other lines for the motion of the nodes on the interface with an 
appropriate topology. 

To summarize, the domains RL and Rs are covered by a finite element mesh endowed with a fixed 
topology and which is entirely characterized by a set of scalar variables S k  describing the location of 
C. 

A finite element interpolation is chosen for the unknown fields; the shape functions are invariant 
with respect to the co-ordinates of the parent element, but their values at a given spatial location 
depend upon the co-ordinates of the nodes through the isoparametric transformation and thus 
upon the variables S k ,  which are time dependent. In our work, the shape functions will be the same 
for the velocity components and the temperature, whereas they are different for the pressure. The 
finite element interpolation is then given as follows: 

where Tj ,  V j ,  Pi denote (generalized) nodal values for the temperature, the velocity and the 
pressure, respectively. The finite element meshes for the present work contain quadrilateral 
elements only; the $ j  s are biquadratic Lagrangian shape functions, and the bj s stand for complete 
piecewise linear polynomials. There are three P j  unknowns per element, which are not necessarily 
associated with the nodes; the representation for the pressure is piecewise continuous. 

The spatial discretization is obtained by means of the Galerkin procedure applied to the system 
(1)-(3). We wiIl however consider that (2) and (3) coalesce into a single equation 

where the physical parameters p, c and k depend upon the location within the mesh, and v vanishes 
in R,. Equation (5) is implicitly contained in (7) because the latent heat of fusion on C acts as a line 
heat source within the domain. 

The Galerkin procedure, followed by the application of the divergence theorem on the second- 
order derivatives, produces the following set of algebraic equations: 

$ ~ ; P L  - + T.Vi + (V$T; - PI + p(VT + V i ' ) )  + ( $i;pLrx(T - T,,)g) - Fi = 0, in S Z , ,  ( (E )> 
(6 , ;V.T) = 0, in R,, (8) 

t,hi;pc - + i - V T  + (V$T; k V T )  - Qi = 0, in R,uR,. ( (: -)) 
where (;) denotes the L2 scalar product. The symbols Fi and Qi stand for generalized nodal forces; 
Qi in particular contains the contributions from the boundary conditions and the latent heat of 
fusion. The discretized equivalent of (4) is 

T =  T, on C. (9) 
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The system (8) contains the Eulerian time derivatives ailat and a?./& which, in view of (6), are 
given by 

since the shape functions are time-dependent through their relation to interface co-ordinates S, .  
For evaluating the time derivatives a+j/dt, we use the procedure introduced by Lynch and Gray,’ 
which we briefly recall. Let us consider on Figure 3 a time-dependent isoparametric element and its 
parent element expressed in the standard co-ordinates 5 and q. For a fixed value of 5 and q, the 
velocity of the corresponding point in the isoparametric element is defined as the velocity of the 
moving mesh and identified as vM. Since the value of $i is invariant with respect to 5 and q, we have 

=o, 
and by means of the co-ordinate transformation from (5, q)  to x we obtain 

In view of our definition of vM we have 

and thus 

Thus, the time derivatives in (8) will be replaced by the following expressions: 

Figure 3. Time-dependent isoparametric element and its parent element 
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where dot superscripts denote the time derivatives of the nodal variables. We note that the mesh 
velocity vM and the normal velocity of the interface uz in (5) depend linearly upon the time 
derivatives S ,  of the interface co-ordinates. 

For obtaining the final form of the discretized equations, we substitute (6) and (10) for T, i,fj and 
their time-derivatives in (8). Let V*, P*, T*, S* denote the vectors of nodal velocity components, 
nodal pressures, nodal temperatures and nodal interface co-ordinates, respectively. The discretized 
form of (8) may then be written as follows: 

M(S*)V* + K(V*,S*,S*)V* + C(S*)P* - F(T*,S*) = 0, 

CT(S *)V * = 0, 

M’(S*)T* + K’(V*,S*,S*)T* - Q(T*,S*,S*) = 0, 

( 164 

( 16b) 

( 164 
where M, M’ are the mass matrices and K, K’ include the diffusive and convective contributions in 
the momentum and energy equations. The term F(T*, S*) contains the buoyancy forces and the 
surface forces, while Q(T*, S*, S*) contains the contribution of the heat of fusion and the heat flux 
on the boundary. Finally, (9) takes the general form 

DT* = T, (17) 
where T, is a vector with all its components equal to T,. 

4. TIME-DISCRETIZATION 

Let Z denote a vector containing the n nodal unknowns of the problem. The system of ordinary 
non-linear differential equations ( 1  6), (1 7) may be summarized as follows: 

A(Z)Z = B(Z), (18) 

Z(t,) = z,. (19) 

B(Z) = 0. (20) 

with a set of initial conditions at time to 

When a steady-state solution exists, it is the solution of 

The time is discretized into a set of instants to < t ,  < ... < t,; let At,+ , denote the difference 
( t ,+  , - t,). We assume that Z and Z are known up to time t,. We need to specify an algorithm for 
calculating Z,,, = Z(t,+ l). 

An explicit algorithm is such that Z, + may be calculated entirely in terms of the values of Z and 
2 at earlier instants; it is summarized by 

z,+ 1 = z,, (21) 

(22) 

Z,=Z,+~At,+1[2Z,+At,+, /At,(Z, , -Zi , -~)] .  (23) 

where Z, is a linear combination of Zi and Zi, i < n. With the Euler explicit method, we have 

Zr = Zn + At,+ 1 A n ,  

whereas the second-order Adams-Bashforth method gives us 

An implicit algorithm is such that Z,, is calculated as a linear combination of &,+ , , formally 
obtained on the basis of (18), and a vector Z, which is itself a linear combination of earlier values of 
Z and 2, i.e. 
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Zn+l=z%+l+Z,,  (24) 

where z is a scalar parameter. Multiplying (24) on the left by A(Z,+ 1) and substituting B(Z,+ 1) for 
A(Z,+ l)&,+ on the basis of (18) we obtain 

A(Zn + 1 )(zn + 1 - Zr) - zB(Zn + 1 1 = 0 (25) 

which constitutes a non-linear algebraic system of equations in Z,+ 1. Classical one-step implicit 
formulae are given by the equation 

z,+ 1 = z, + At, + 1 cez, + 1 + (1 - O)Z,I; (26) 

respective values of 0 equal to 1/2,2/3 and 1 produce the Crank-Nicolson, Galerkin and implicit 
Euler algorithms. Comparing (24) and (26) we obtain 

T = 0 At,+ Z, = Z, + (1 - 0) At,+ 1 2,. (27) 
An explicit method requires a reduced amount of computer time as compared to an implicit 

method; however, the explicit method is conditionally stable, and (26) is A-stable" whenever 
1/2 < 8 < 1. Moreover, with the finite element method, the use of an explicit method for every time 
step requires further approximations such as mass-lumping, and the pressure needs to be 
calculated as the solution of a linear system. Finally, the calculation of the interface location is 
difficult with an explicit algorithm. 

Here, we follow the method suggested by Gresho, Lee and Sani" which is summarized as 
follows: 

(i) 
(ii) 

(iii) 

For 

A predicted value Z,P+l is calculated on the basis of an explicit formula such as (21). 
The non-linear system (25) is solved with the use of Z,P+ as an initial guess. The method of 
solution is the Newton-Raphson method. A small enough time step allows the use of a 
single iteration. 
The value of &,+ is calculated from Zr and Z,+ on the basis of (24), which is consistent 
with (18). 

obtaining the results shown in sections 6 and 7 we have selected the Adams-Bashforth 
formula (23) for the explicit scheme and the Crank-Nicolson formula (26) for the implicit scheme 
with a view to a lower discretization error. Since the procedure requires the knowledge of at 
earlier times, the first few values are calculated on the basis of Euler's explicit and implicit formulae. 

An important advantage of the predictor-corrector scheme described above is the possibility of 
monitoring the time step for reducing the local discretization error. Let us assume that the solution 
at t, is exact, and let Z:+ denote the exact solution at t, + 1. We define the discretization error d, + 

as follows: 

d,+l =zn+1-z:+1. 

It was shown by Gresho, Lee and Sani" that 

d,+1 = 3(1 + At,/At,+ 1)- l(Z,+ 1 - z,P+ 1)  + W t l +  1)  (29) 
for a combination of the Adams-Bashforth and Crank-Nicolson formulae. Thus, (29) provides us 
with an easy evaluation of the local discretization error. Let a superscript L on the vectors d and Z, 
1 < L < 3, denote those partial vectors which contain the velocity, temperature and interface 
variables, respectively. By means of a Taylor series argument, it is then possible to show that 
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where we have assumed that llZ;+ 11 - IIZ; 11 30. Finally, we need to impose a criterion on the 
magnitude of the error d, + 2 .  For each type of variable, we select a relative tolerance cL and require 
that 

and ‘we obtain from (30) and (31) that 

Typical values of cL in the present work lie between 5 x 
In practice, however, the time step is not modified at every iteration. Maximum and minimum 

values At,,, and Atmin are selected at the outset. When Atn+ deviates from At,+ by less than 10 
per cent, the time step remains unchanged. When At,+2 is less than 0.8At,+ 1, the current step is 
recalculated with a lower value equal to When At,+2 is less than Atmin, the time marching 
procedure is interrupted. 

The predictor-corrector algorithm which has just been described for the general equation (18) 
may now be applied to the solution of ( 1  6), ( 1  7). We note however that there is no predictor for the 
pressure variables which do not appear through their time derivatives in (16). The system (16), (17) 
is fully coupled and leads to a large number of simultaneous algebraic equations. The cost of the 
calculation is roughly divided by two when the equations of motion are decoupled from the energy 
and the interface equations. At each time step, the algorithm is decomposed as follows: 

(i) The predicted values of the velocity components, the temperature and the interface co- 
ordinates are evaluated by means of an explicit scheme (22) or (23). 

(ii) The energy equation (16c) and the interface equation (17) are simultaneously solved for 
calculating T,*+ and S,*+ 1, with T,*f and S,*f as the initial guess, and the convective 
terms in K’ are calculated on the basis of the predicted velocity field V,P+ 1. 

(iii) The equations of motion and incompressibility (16a, b) are solved for calculating V,*+ and 
P,*+, with V,*fl and P,* as the initial guess. The solution is calculated on the (moving) 
updated mesh, and the buoyancy forces are evaluated on the basis of the new temperature 
field T,*+ 1. 

One must realize that the coupling between the energy equation (16c) and the interface 
equation (1 7) requires a considerable amount of calculation and programming for evaluating the 
Jacobian matrix in the Newton-Raphson algorithm. Indeed, the geometry of each finite element 
will depend in general upon the components of S*. In earlier work9 we had avoided such difficulties 
through further decoupling the energy and the interface equations. Instead of step (ii) above, we 
would first solve the energy equation with S,*f substituted for S*, and then select the interface as 
the melting point isotherm. However, it has been found that the coupling between the energy 
equation and the interface condition is very strong, up to the point where an actual decoupling of 
the calculation usually requires very small time steps and numerous iterations on the location of 
the interface. With a decoupled scheme, we have encountered dramatic oscillations of the interface 
co-ordinates when time proceeds, and an erratic behaviour is frequent when the latent heat of 
fusion is assigned its correct physical value. We have now forsaken the decoupling of the interface 
calculation from the energy equation, and we will find in sections 6 and 7 that our new algorithm is 
very robust. 

The boundary conditions during crystal growth are time dependent. The natural boundary 
conditions are easy to implement; surface forces and heat fluxes are indeed contained in the vectors 
F and Q in (16). However, one needs to remember that the location of the boundary nodes moves 
with respect to the outer world together with the finite element mesh and the interface. Nodal fluxes 

and 5 x 
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may very well be time-dependent although their values are fixed, but non-uniform, with respect to 
the frame of reference of the calculations. 

A spurious oscillatory behaviour of the time-dependent solution is sometimes detected when 
time-varying essential boundary conditions are imposed at some nodes. Let y be a nodal value 
which is assigned the value f ( t )  as time proceeds. The Galerkin equation corresponding to the 
nodal value y is then replaced by the equation 

Y " + ' = f ( t n + I ) .  (33) 
Oscillations may occur when a time-discontinuous behaviour is imposed on y.  It has been found 
useful to rewrite essential boundary conditions as differential equations of the form 

where 1 is fixed real negative scalar. Equation (34) is equivalent to y = f ( t )  when f(t) is continuous. 
When f ( t )  presents a discontinuity, y nevertheless remains continuous, and tends to the behaviour 
of f ( t )  when 111 is large. Another advantage of choosing (34) is that the essential boundary 
condition is not dissociated from the other equations during the time-stepping procedure. 

5. CALCULATION O F  THE COEFFICIENTS OF THE ALGEBRAIC SYSTEM 

We have seen in section 3 that the coefficients of the algebraic system (16) depend upon the co- 
ordinates of the interface which are represented by the vector S*. Such a dependence results from 
the shape of the element which varies with the location of the interface, and from the values of the 
shape functions. One of the main features of our work is the simultaneous calculation of the 
temperature and of the interface in the transient process; we have seen that the method requires the 
use of the Newton-Raphson procedure at each time step for linearizing the equations with respect 
to the nodal temperatures and the components of S*. 

In order to calculate the derivatives of the coefficients of (16) with respect to the components of 
S*, we use the chain rule of differentiation as follows. Let I be the contribution of an element to  a 
term of the system (16) and let x i ,y i  be the nodal co-ordinates of the element. We will write 

- ar ?( ar axi ar a y i )  
ask axi as, ay i  as, -- +--,  - - (35) 

where S,  is a typical component of S*. The partial derivatives of xi and yi  with respect to S, are 
easily obtained from the transformation law of the mesh with the motion of the interface. However, 
for each term of (1 6) we need to find an easy way of calculating such derivatives as aI /ax ,  and allay,. 

There exists an interesting transformation which has allowed us to simplify our calculations and 
which is worth reviewing in the present context by means of a specific example. A typical diffusion 
term of K' in (16) has the following form: 

where we have limited the integration to the finite element Re; the domain Re and the shape 
functions Il/i depend upon S* through the nodal co-ordinates. Let us show how one can easily 
formulate the derivatives akFj/ ax, or ak:j/ay,, where x,, y ,  are the nodal co-ordinates of the 
element. 

Let w be the parent element in a 5-1 co-ordinate system to which Re corresponds through an 
isoparametric transformation (Figure 4). The Jacobian J of the transformation from (5 ,  q) to (x,  y )  is 
given by 
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Knowing that 
x = cxi*i, y = cyiI+bi 

through the isoparametric transformation, we find 

It is then easy to see that 

and similarly 

a+i 1 aJ -=-- 
a~ J ayi’ 

In view of (36) and (40) we obtain, 

(37) 

(38) 

where the integral is now evaluated over the parent element. 
On the basis of (37) and (38) one can verify that it is easy to calculate the first and second 

derivatives of J with respect to the nodal co-ordinates xk and y ,  within the parent element. 
Similarly, calculating the derivatives of k;j with respect to xk and yk reduces to a simple numerical 
integration in the parent element. Although the transformation (41) has facilitated our calculations 
considerably, obtaining the linearizing form of (16) remains a formidable task. Analytical test 
problems are essential for ascertaining the correctness of the numerical code. 

6. TEST PROBLEMS 

The transient algorithm coupled with the remeshing procedure has been tested on two simple one- 
dimensional problems solved on a single row of finite elements. 

First, we solve the heat diffusion equation 

aT a2T 
0 G x GL-= K-, 

at a x 2  

where IC is the heat diffusivity, with the following boundary conditions: 

T(0, t )  = 123 ,  

T(L, t )  = 7.5 + sin wt 

and the initial condition 

T(x,  0) = 12.5 - 5x/L. 

The analytical solution to that problem is given by 

(43) 

(44) 

(45) 
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with 

W 

T(x ,t) = 12.5 - 5x/L + A ,  sin (k,x) exp ( - ~ k , 2  t )  
n =  1 

+ { sin o t [ a  cos (yx)sh(yx) + b sin(yx)ch(yx)] 

+ cosot[asin(yx)ch(yx) - bcos(yx)sh(yx)])(a2 + bZ)-’, (46) 

k, = nn/L, Y = - , a = sh(yL) cos (yL), b = ch(yL) sin (yL), (;) l’’ 

1 
L A ,  = -( - l)n+l 4k,y2 [y2 + (7 - k,)’] - ’ [y’ + ( y  + k,)’] - ’. (47) 

The right-hand side consists of a time-independent response which is linear in x, a transient 
response and the oscillatory regime. The interface coincides with the isotherm T =  10. For the 
numerical calculation, we have selected o = 27c, K = 1 ,  L = 1. The mesh is composed of 20 elements 
of equal size at t = 0 and it deforms continuously with the interface. 

one reaches a time t = 0.1 114 after 10 time steps. At that time, one 
cannot distinguish between the analytical and the numerical plots given in Figure 4. In Figure 5 
we show a graph of the absolute error; its maximum value is 1.6 x despite the relatively 
permissive value of the tolerance. With E = one obtains a maximum error of 2 x lop4, but 21 
time steps are now needed to reach the same value of time. The graph of the error for E = is 
shown in Figure 6 when the temperature at  x = L is imposed by means of an algebraic equation 
(curve (a)) or by a differential constraint (curve (b)). The order of magnitude of the error is the same 
with both techniques. 

As a second test, we wish to study a problem where the latent heat of fusion is taken into account. 
We consider in Figure 7 a circular cylindrical volume filled with gallium arsenide (its physical 

With a tolerance E = 

.7 

T - T  

Figure 4. Temperature at time t = 0.1 114. The analytical solution is represented by a continuous curve, whereas the 
correspond to the numerical solution 

crosses 
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Figure 5. Graph of the local error of the temperature at time t = 0.1 114 with a tolerance parameter E = 

3 

2 

8 

= 0  s 
0 - 
n 

-1 

- 2  

-3 

.4 .6 .8 x 1.0 

Figure 6. Graph of the local error of the temperature at time t = 0.1 114 with a tolerance parameter E = The 
temperature on the right is imposed by means ofan algebraic equation for curve (a) and by means ofa differential constraint 

for curve (b) 

properties are given in the Appendix). The outer boundary is thermally insulated. The temperature 
on the lower boundary oscillates in time: 

T(0, t )  = 1491 + 5 sin (2nt) (in K), (48) 

and T = 1531 K on the upper boundary. The interface is located at T = 151 1 K, which is the 
melting point isotherm. As an initial condition we select the steady-state solution with T = 1491 K 
on the lower boundary. The initial mesh contains four elements of equal size. 
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z t  T = 1531 K 

T31511K 

I 

T=1491+ 5 sin (2nt)K I 
Figure 7. Geometry and boundary conditions of the test problem 

I cm 

5.87 1 . time !n s. 
0 .4 .8 1.2 

Figure 8. Position of the interface as a function of time for various values of the latent heat of fusion: (a) AHf = 0 
(b) AHf = 7.2 x 10'; (c) AHf = 7.2 x lo5 J kg-'  

In order to test the interface algorithm we have considered three different values of the latent 
heat of fusion, i. e. AHf = 0,7.2 x lo2 and 7.2 x lo5 J/kg; the latter is the correct physical value. 
Figure 8 shows the calculated position of the interface as a function of time for these three values. 
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Each curve corresponds to 30 time steps with a tolerance E = As one might expect, the 
amplitude of the oscillations decreases when the thermal inertia of the interface increases. The 
magnitude of the time steps is also increasing with the latent heat of fusion; after 30 time steps, a 
time lapse of 11 s has been obtained with a vanishing value of AHf and 15 s has been reached for the 
maximum value. The reason is that, for high values of AHf, the motion of the interface is small, and 
the corrected location of the interface is almost equal to the predicted value. 

v = O ,  F x = O ,  T = f ( x )  

/ I  liquid phase 

f iL 
h 

L 
/ t  

7. NUMERICAL SIMULATION OF THE HORIZONTAL GROWTH 

We wish to apply our numerical algorithm to predict the motion of the melt and the location of the 
interface during the horizontal growth of a semi conductor crystal. The geometry of the problem is 
given in Figure 9. The melt is contained in a four-to-one rectangular cavity. The upper boundary is 
a free surface, and the fluid does not slip along the walls or along the interface. Here we assume that 
the temperature is imposed on the boundary and varies linearly with the horizontal co-ordinate. 
The algorithm is also applicable to more realistic types of boundary conditions. 

The data of the problem are given in a non-dimensional form. We select the depth h of the cavity 
as the characteristic length and the temperature difference 6T between the end walls as the 
characteristic temperature. The Grashof number of the flow is given by 

Gr = a g 6 T h 3 / v 2  (49) 

Pr = v / t i , ,  (50) 

St  = AHf/cL6T. (51) 

where v is the kinematic viscosity, and the Prandtl number is 

where ti1 is the heat diffusivity in the liquid phase. Finally, the Stefan number St is defined by 

We will consider a case where Gr = 3 16,666 and Pr = 001 5, and we will use different values of St .  
We will assume in this example that the thermal diffusivity is the same in the liquid and in the solid 
phases. Plots of time-dependent variables will be presented as functions of a non-dimensional time, 
which we need to multiply by 1250 for a crucible which is 2.5 cm deep and a kinematic viscosity of 
the melt equal to 0.5 cs. In the sequel, we will refer to dimensional times based on such a scaling. 

The initial graded undeformed mesh contains 12 x 22 finite elements; 22 x 17 are located in the 
liquid phase, and 12 x 5 in the solid phase; the mesh is shown in Figure 10. In a first calculation we 
assume that the temperature profile on the boundary is time-independent, and that the interface 
has no thermal inertia, i.e. AHf vanishes ( S t  = 0). At that stage, we are not properly calculating 
crystal growth since the heating elements are not moving, despite the coexistence of solid and liquid 

Figure 9. Geometry and boundary conditions of the crystal growth problem 
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Figure 10. Finite element mesh for calculating the crystal growth 
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Figure 11. Plot of the non-dimensional kinetic energy as a function of time 

phases. However, an oscillatory motion of the melt should induce an important motion of the 
interface since there is no latent heat of fusion. 

The non-dimensionhl time for this first test goes from 0 to 0 19 (i.e. 0 to 237.5 s). Figure 11 shows 
the growth of the non-dimensional kinetic energy in the liquid phase. The kinetic energy reaches a 
periodic regime with a period of 31 s. From our earlier calculationsg we know that the Grashof 
number is slightly above the onset of periodic motion; this is confirmed by the sinusoidal aspect of 
the kinetic energy as a function of time, and by the Fourier analysis of the kinetic energy shown in 
Figure 12, where a single peak dominates the others. The location of the interface at  mid-distance 
between the upper and the lower boundaries is shown in Figure 13, and a zoom of the last three 
periods is given in Figure 14. As we might expect from Figure 12, we find a period of 31 s, which is 
however clearly subdivided into two subperiods of 15.5 s. This is confirmed by Figure 15 which 
shows the Fourier analysis of the curve of Figure 14. 

The same results were obtained earlier with a decoupled methodg where the location of the 
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Figure 12. Fourier analysis of the curve of Figure 1 1  
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Figure 13. Plot of the location of the interface at mid-distance between the upper and lower boundaries as a function of 
time 
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Figure 14. Enlarged view of the framed section of the curve in Figure 13 
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Figure 15. Fourier analysis of the kinetic energy shown in Figure 14 
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interface was not simultaneously calculated with the temperature field. It was then found that the 
magnitude of the time step was depending upon the tolerance on the interface location and would 
often decrease down to small unpractical values. With the present coupled method, the calculation 
of the velocity field in the Navier-Stokes equations is solely responsible for adjusting the time step. 
The robustness of the algorithm is quite apparent when one jumps from one type of problem 
definition to our next calculation at time 019 s. 

In this second calculation, we wish to calculate the shape of the interface during crystal growth, 
i.e when the interface moves across the crucible together with the heating elements, with the 
simultaneous release of solidification heat. We expect that the latter will bring dramatic changes to 
the shape of the interface. A typical value of the solidification rate is 1 cm/h, or a non-dimensional 
velocity of 0139. Within the time lapse of the first test (0.19 non-dimensional units), the interface 
would then move across a distance less than 0.03 times the depth of the crucible. Rather than taking 
into account time dependent boundary conditions, we may as well consider time independent ones 
and calculate the velocity and temperature distribution when the heat produced per unit length of 
the interface and per unit time is given by 

rz = -pAHfvz - pAHfvc.n (52)  
instead of (5). Here, vc.n is the scalar product of the translational velocity of the heating elements 
and the normal to the interface directed towards the liquid phase, and vz is the transient normal 
velocity of the interface, which should vanish once a steady-state interface has been reached. To 
obtain the correct shape of the interface during crystallization, we keep the product AHfvc fixed 
when time proceeds with fixed boundary conditions. 

In actual calculations, we often give different values to the factors AHf in the two terms on the 
right of (52). The second term is fixed and corresponds to the release of latent heat in the actual 
process, whereas the first one opposes thermal inertia to the transient motion of the interface. Thus, 
while we keep AHfvc fixed, it is advantageous to reduce AHf in the group AHfv, in order to obtain 
the steady (or periodic) regime within a shorter time. Of course, the transient response obtained 
with such a procedure has no physical meaning. 

For our second example, starting from the configuration at time 0.19 as an initial condition, we 
have used St = 120 for the second term on the right of (43) and St  = 1 for the first term. Figure 1 1  
shows the behaviour of the kinetic energy as a function of time. The main change is a larger 
amplitude of the oscillation with a slightly longer period of 33 s. The reason is that the interface is 
now convex and leaves more room for the periodic motion of the eddies. Figure 13 shows the 
location of the interface at mid-distance from the plane boundaries; we find that it moves quickly to 
its new position. No numerical difficulties are associated with this transient motion of the interface, 
whereas our earlier uncoupled technique was often unstable under transient conditions. The 
interface is still slightly oscillating with an amplitude of the order of lop3 times the depth of the 
crucible. At time 0.33, we let the Stefan number in the first term of (52)  reach its final value, and we 
find that the amplitude of the motion of the interface cannot be noticed in Figure 13. At that stage, 
the amplitude is of the order of 3 x times the depth of the crucible, or approximately 1 pm 
with a depth of 2.5 cm. However, the periodic velocity of the interface is small as compared to the 
velocity of the heating elements, and the periodic motion may just result in a modulation of the 
growth velocity. 

Let us now examine the nature of the oscillatory motion taking place in the crucible. Figure 16 
shows a period of the kinetic energy as a function of time, on which we have indicated six specific 
times at which we want to inspect the streamlines and the isotherms. They are shown in Figure 17 
where we find an oscillatory mechanism which is very similar to what was shown in the first paper 
of this series. Here, a solid phase coexists with a liquid phase and the shape and the interface is 
strongly affected by the release of the latent heat of fusion. 
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Figure 16. Period of the kinetic energy and instants at which the streamlines and the isotherms are shown in Figure 17 

Figure 17. Streamlines and isotherms during the period of the kinetic energy shown in Figure 16 
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Figure 18. Plot of the non-dimensional kinetic energy as a function of time; the melting isotherm is anchored on the 
boundary at mid-distance from the end-walls 

Figure 19. Streamlines and isotherms corresponding to the situation of Figure 18 

For our third example, we have selected 0.5 as the non-dimensional melting temperature. With 
the boundary conditions of Figure 9, the interface should thus be anchored at mid-distance 
between the end-walls. We have used the same group AHfv,.n as in our previous example with a 
lower value of AHf for the first term on the right of (52). Figure 18 shows the behaviour of the 
kinetic energy as a function of time. The transient periodic behaviour is damped down very quickly. 
A steady state is reached within a non-dimensional interval of 0.1, or 125 s. The streamlines and the 
isotherms are shown in Figure 19. The geometrical ratio of the melt is such that an oscillatory 
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motion cannot occur at the present value of the Grashof number. The interface has also reached a 
steady-state position. 

8. CONCLUSIONS 

In Parts I and I1 of the present series, we have found that, despite the existence of a two- 
dimensional mechanism for explaining the oscillatory motion of the melt, three-dimensional effects 
might dominate the flow. Whatever be the future developments in the simulation of the Bridgman 
growth, it will be necessary to select an appropriate algorithm for locating the interface. The 
algorithm should also be applicable to the simulation of the vertical Bridgman growth and the 
Czochralski growth. 

Our earlier investigations has shown that locating an interface in a transient problem is a 
delicate task, in particular when the release of latent heat of fusion is taken into account. In the 
present paper, we have shown that the coupling between the energy equation and the interface 
condition is such that, in our implicit time-marching technique, the corresponding discretized 
equations need to be solved simultaneously. Our scheme has been found accurate and robust. 

We found that the release of latent heat of fusion has a major influence upon the shape of the 
interface. However, in order to obtain a snapshot of the isotherms, one can accelerate the transient 
phenomena by separating the release of heat at  the freezing front into transient and steady 
contributions. 

Our examples show the necessity of imposing realistic boundary conditions in our future 
developments, which will take into account such phenomena as radiation and heat convection on 
the walls of the crucible and at  the free surface. 
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APPENDIX: ESTIMATED PHYSICAL PROPERTIES OF GALLIUM ARSENIDE 

Solid phase: thermal conductivity k,  = 7.12 Wm-' K- '  
specific heat C, = 424 JK-'  kg-' 
specific mass ps = 5.17 x lo3 kgm-3 

Liquid phase: thermal conductivity k ,  = 17.8 Wm-' k- '  
specific heat C, =434JK-'kg- '  
specific mass pI = 5.71 x kgm-3 
thermal dilatation 1.87 1 0 - 4 ~ - 1  
kinematic viscosity = 5 1 0 7 ~ ~ ~ - 1  

Interface: melting temperature T,,, = 151 1 K 
latent heat of fusion AHf = 7.17 x lo5 Jkg-' 
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